Abstract

In this paper, a novel neuro-optimal control scheme is proposed for unknown nonaffine nonlinear discrete-time systems by using adaptive dynamic programming (ADP) method. A neuro identifier is established by employing recurrent neural networks (RNNs) model to reconstruct the unknown system dynamics. The convergence of the identification error is proved by using the Lyapunov theory. Then based on the established RNN model, the ADP method is utilized to design the approximate optimal controller. Two neural networks (NNs) are used to implement the iterative algorithm. The convergence of the action NN error and weight estimation errors is demonstrated while considering the NN approximation errors. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.