Abstract

Routing is one of the main drivers of the end-to-end performance of bundle transmissions over a disruption tolerant network given the potentially large impact of the temporary but long-term partitioning that can occur at different sections of the network. A neuromorphic networking approach that defines an adaptive bundle routing for disruption-tolerant networks (DTN) is proposed where spiking neuronal networks (SNN) are used to determine the routing decisions of autonomous agents. The event-driven information encoding of spiking neurons involves very low energy consumption, which makes this approach attractive for challenging DTN applications with limited access to energy sources. The SNNs are continually updated within an autonomic loop, which produces synapse strength updates that are proportional to the expected communication costs of the routing decisions. A reward shaping procedure and a delay-tolerant mechanism for finding the local link-state is proposed, which allows determining instantaneous learning rewards for the agents. The method was tested on an emulated space communications network with scheduled disruptions. The results show that the proposed cognitive routing approach offers improved bundle delivery performance under network congestion compared to the standard Contact Graph Routing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.