Abstract

In this paper, the problem of adaptive decentralized neural network (NN) control for a class of large-scale stochastic nonlinear time-delay systems with unknown dead-zone inputs is investigated. Neural networks are utilized to approximate unknown nonlinear functions, and an adaptive decentralized controller is constructed by incorporating the minimal learning parameters algorithm into backstepping design procedure. It is proved that the proposed control scheme guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in probability. Finally, a numerical example is provided to demonstrate the effectiveness of the present results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.