Abstract

Correlation dimension (CD) is used for analysing the chaotic behaviour of the nonlinear heart rate variability (HRV) time series. In CD, the autocorrelation function is used to calculate the time delay. However, it does not provide optimum values of time delays, which leads to an inaccurate estimation of the HRV between phases of the menstrual cycle. Thus, an adaptive CD method is presented here to calculate the optimum value of the time delay based upon the information content in the HRV signal. In the proposed method, the first step is to divide the HRV signal into overlapping windows. Afterwards, the time delay is calculated for each window based on the features of the signal. This procedure of finding the optimum time delay for each window is known as adaptive autocorrelation. Then, the CD for each window is calculated using optimum time delays. Finally, adaptive CD is calculated by averaging the CD of all windows. The proposed method is applied on two data sets: (i) the standard Physionet dataset and (ii) the dataset acquired using BIOPAC(®)MP150. The results show that the proposed method can accurately differentiate between normal and diseased subjects. Further, the results prove that the proposed method is more accurate in detecting HRV variations during the menstrual cycles of 74 young women in lying and standing postures. Three statistical parameters are used to find the effectiveness of adaptive autocorrelation in calculating time delays. The comparative analysis validates the superiority of the proposed method over detrended fluctuation analyses and conventional CD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.