Abstract

The design and implementation of adaptive controllers for a sensorless synchronous reluctance drive system with direct torque control is proposed. Two adaptive control algorithms, which include adaptive backstepping control and model-reference adaptive control, are proposed to improve the performance of a sensorless direct torque control synchronous reluctance motor drive system. A digital signal processor, TMS320-C30, is used to execute the rotor position estimating technique and the adaptive control algorithms. The system shows good transient responses, good load disturbance responses and good tracking responses. Several experimental results validate the theoretical analysis. The advanced controller design for a sensorless synchronous reluctance motor drive with direct torque control is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.