Abstract
Transient reduced food intake (hypophagia) following high stress could have beneficial effects on longevity, but paradoxically, hypophagia can persist and become anorexia-like behavior. The neural underpinnings of stress-induced hypophagia and the mechanisms by which the brain prevents the transition from transient to persistent hypophagia remain undetermined. In this study, we report the involvement of anetwork governing goal-directed behavior (decision). This network consists of the ascending serotonergic inputs from the dorsal raphenucleus (DR) to the medial prefrontal cortex (mPFC).Specifically, adult restoration of serotonin 4 receptor (5-HT4R) expression in the mPFC rescues hypophagia and specific molecular changes related to depression resistance in the DR (5-HT release elevation, 5-HT1A receptor, and 5-HT transporter reductions) of stressed 5-HT4R knockout mice. Theadult mPFC-5-HT4R knockdown mimics the null phenotypes. When mPFC-5-HT4Rs are overexpressed and DR-5-HT1ARs are blocked in the DR, hypophagia following stress persists, suggesting an antidepressant action of early anorexia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.