Abstract

This paper presents two adaptive neural-fuzzy controllers equipped with compensatory fuzzy control in order to adjust membership functions, and as well to optimize the adaptive reasoning by using a compensatory learning algorithm. To the first controller is applied compensatory neural-fuzzy inference (CNFI) and to the second compensatory adaptive neural fuzzy inference system (CANFIS). Each controller is incorporated into a two channel bilateral teleoperation architecture involving force-position scheme, which combines the position control of the slave system with force reflection on the master. An analysis of stability and transparency based on a passivity framework is carried out. The resulting controllers are implemented on a one degree of freedom teleoperation system actuated by DC motors. The experimental results obtained show a fairly high accuracy in terms of position and force tracking, under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.