Abstract

ABSTRACTThe composite quantile regression (CQR for short) provides an efficient and robust estimation for regression coefficients. In this paper we introduce two adaptive CQR methods. We make two contributions to the quantile regression literature. The first is that, both adaptive estimators treat the quantile levels as realizations of a random variable. This is quite different from the classic CQR in which the quantile levels are typically equally spaced, or generally, are treated as fixed values. Because the asymptotic variances of the adaptive estimators depend upon the generic distribution of the quantile levels, it has the potential to enhance estimation efficiency of the classic CQR. We compare the asymptotic variance of the estimator obtained by the CQR with that obtained by quantile regressions at each single quantile level. The second contribution is that, in terms of relative efficiency, the two adaptive estimators can be asymptotically equivalent to the CQR method as long as we choose the generic distribution of the quantile levels properly. This observation is useful in that it allows to perform parallel distributed computing when the computational complexity issue arises for the CQR method. We compare the relative efficiency of the adaptive methods with respect to some existing approaches through comprehensive simulations and an application to a real-world problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.