Abstract

Adaptive changes of the thermoregulatory system include morphological and functional modifications. The morphological modifications such as changes in body shape and insulation need time periods of months to years to develop, unless they are genetically fixed and appear seasonally. In general, they are preceded by functional modifications, including changes in capacity of the effector systems and changes in regulatory characteristics, which need much less time to develop. These early changes in regulatory characteristics, which can be defined as deviations in threshold and gain of the thermoregulatory responses, have been described and subdivided into short-term (minutes) and long-term (weeks) modifications. Evidence for the participation of monoaminergic brain stem systems in these modifications has been reviewed. On the basis of recent insights into the organization of the thermoregulatory system, and of evaluation of experimental evidence from electrophysiological, neuropharmacological, and neuroanatomical studies it can be concluded that these systems are involved in adaptive modifications. Receiving information from several sensory systems they seem to deliver additional modulatory signals, which may interfere with the processing of specific thermal information at several sites. Theoretically, the central monoamines may participate in the control of thermal input, in the central integration of thermal signals, and in modification of output signals to thermoregulatory effectors. Best documented is their modulatory action on thermosensitive and thermointegrative hypothalamic neurons. There, the monoamines 5-hydroxytryptamine and noradrenaline act as antagonists, which enhance or diminish the effects of thermal afferents mediated by other transmitters. Moreover, the antagonistic monoaminergic systems are interconnected and can influence each other at the level of lower brain stem. The activity in central monoaminergic systems can also be modified by neurohumoral feedback mechanisms from the periphery. By means of these interrelations the vegetative responses of the organism can be corrected and optimized. These interrelations can explain also some cross-adaptive changes in the thermoregulatory threshold for shivering evoked by nonthermal factors such as food intake or long-distance running.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.