Abstract

Recently there has been an increasing interest for a better understanding of ultra low Reynolds number flows. In this context we present a new setup which allows to efficiently solve the stationary incompressible Navier-Stokes equations in an exterior domain in three dimensions numerically. The main point is that the necessity to truncate for numerical purposes the exterior domain to a finite sub-domain leads to the problem of finding so called "artificial boundary conditions" to replace the conditions at infinity. To solve this problem we provide a vector filed that describes the leading asymptotic behavior of the solution at large distances. This vector field depends explicitly on drag and lift which are determined in a self-consistent way as part of the solution process. When compared with other numerical schemes the size of the computational domain that is needed to obtain the hydrodynamic forces with a given precision is drastically reduced, which in turn leads to an overall gain in computational efficiency of typically several orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.