Abstract

This paper is concerned with bipartite tracking control design for multiple autonomous surface vessels with unknown dynamics and external disturbances. Under a signed directed graph, novel distributed adaptive control inputs are constructed recursively by using backstepping method to make the bipartite tracking errors eventually converge to an arbitrarily small compact set by appropriately adjusting design parameters. To reduce the complexity of the controllers, we employ parameter separation technique to deal with the unknown dynamics. In particular, under the assumption that the reference trajectory is only available to a fraction of followers, the cooperative tracking is also achieved with the proposed distributed control design scheme. Finally, two simulation examples are given to demonstrate the effectiveness of theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.