Abstract

The performance of base station adaptive antenna arrays (AAAs) is investigated in conjunction with fixed channel allocation (FCA) and dynamic channel allocation (DCA) schemes. Locally distributed DCA arrangements are studied and benchmarked against standard FCA, in the context of both line-of-sight (LOS) and multipath propagation environments. One-, two-, four-, and eight-element AAAs are employed using the sample matrix inversion (SMI) beamforming algorithm, in both the up- and the downlink. In most investigated scenarios, the locally optimized least interference algorithm (LOLIA) exhibited the best overall compromise in terms of a set of combined metrics, such as the forced termination probability, new call blocking probability, and the probability of a low quality access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.