Abstract

In radio frequency identification (RFID) systems, the detection range and read rates may suffer from interferences between high power devices such as readers. In dense networks, this problem grows severely and degrades system performance. In this paper, we investigate feasible power control schemes to ensure overall coverage area of the system while maintaining a desired data rate. The power control should dynamically adjust the output power of a RFID reader by adapting to the noise level seen during tag reading and acceptable signal-to-noise ratio (SNR). We present a novel distributed adaptive power control (DAPC) and probabilistic power control (PPC) as two possible solutions. This paper discusses the methodology and implementation of both algorithms analytically. Both DAPC and PPC scheme are simulated, compared and discussed for further work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.