Abstract
Gene function annotations enable microbial ecologists to make inferences about metabolic potential from genomes and metagenomes. However, even tools that use the same database and general approach can differ markedly in the annotations they recover. We compare three popular methods for identifying KEGG Orthologs, applying them to genomes drawn from a range of bacterial families that occupy different host-associated and free-living biomes. Our results show that by adaptively tuning sequence similarity thresholds, sensitivity can be substantially improved while maintaining accuracy. We observe the largest improvements when few reference sequences exist for a given protein family, and when annotating genomes from non-model organisms (such as gut-dwelling Lachnospiraceae). Our results suggest that straightforward heuristic adjustments can broadly improve microbial metabolic predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.