Abstract

Fabric phase sorptive extraction (FPSE) is a simple microextraction technique that allows analytes to be rescued from matrix components while using a small volume of samples to analyze complex biological systems. This study used FPSE as a microextraction tool and a sample storage and transfer device. Levofloxacin as a model molecule was applied intravenously (IV) to New Zealand male rabbits. The samples were simultaneously extracted by using FPSE and protein precipitation methods. The final solutions were analyzed using LC-MS equipped with an ACE C18 LC Column (150 mm × 4.6 mm, 5 μm) at 25 °C employed in isocratic elution mode using solution A (0.1% formic acid in water)/solution B (0.1% formic acid in acetonitrile) (80:20, v/v). The total analysis time was less than 15 min. The developed method was validated using the ICH M10 bioanalytical method validation and study sample analysis guidelines. The results obtained using FPSE were statistically identical to those obtained using protein precipitation. The plasma samples applied onto FPSE (10 μL onto 1.0 cm × 1.0 cm Biofluid Sampler) were stored in three different temperatures [refrigerator (2-8 °C), at ambient temperature (20 ± 5 °C), and in the stability cabinet (40 °C, 75% humidity)] and three different storage conditions (Eppendorf tubes, plastic containers, and straw paper envelopes). Levofloxacin in plasma samples adsorbed by FPSE biofluid sampler remained stable at 2-8 °C in Eppendorf tubes for at least 1 week. This study showed that FPSE could be used as a sample storage and transfer device for pharmacokinetic applications that need to work with small sample volumes and discard aggressive cold chains to store and transfer the plasma samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.