Abstract

The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms.

Highlights

  • The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes

  • We investigated the susceptibility of young larvae and emerging adults from four distinct varroa-resistant honeybee populations to oral inoculation with two major honeybee viruses, DWV and ABPV, relative to those of a varroa-susceptible Control population, as well as the mortality of the adult bees from the experiments

  • The exception is the inoculation of the adult bees with DWV, where the exceptionally high background DWV levels precluded any conclusive evidence of infection

Read more

Summary

Introduction

The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. We have shown that individuals from the naturally adapted mite-resistant honeybee population on Gotland, Sweden, survive with higher thresholds of DWV and ABPV infections before bee health is compromised, relative to mite-susceptible unselected ­honeybees[23]. This suggests that host tolerance, rather than resistance, to virus infections is an important component of the naturally adapted survival mechanisms of the Gotland mite-resistant population, in addition to their adapted mite-resistant traits. The Gotland honeybee population appear to have adapted resistance to other virus infection not directly transmitted by varroa mites but harm honeybee health and reduce long-term s­ urvival[24, 25]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.