Abstract

Human immunodeficiency virus type 1 (HIV-1) originated from three independent cross-species transmissions of simian immunodeficiency virus (SIVcpzPtt) infecting chimpanzees (Pan troglodytes troglodytes) in west central Africa, giving rise to pandemic (group M) and non-pandemic (groups N and O) clades of HIV-1. To identify host-specific adaptations in HIV-1 we compared the inferred ancestral sequences of HIV-1 groups M, N and O to 12 full length genome sequences of SIVcpzPtt and four of the outlying but closely related SIVcpzPts (from P. t. schweinfurthii). This analysis revealed a single site that was completely conserved among SIVcpzPtt strains but different (due to the same change) in all three groups of HIV-1. This site, Gag-30, lies within p17, the gag-encoded matrix protein. It is Met in SIVcpzPtt, underwent a conservative replacement by Leu in one lineage of SIVcpzPts but changed radically to Arg on all three lineages leading to HIV-1. During subsequent diversification this site has been conserved as a basic residue (Arg or Lys) in most lineages of HIV-1. Retrospective analysis revealed that Gag-30 had reverted to Met in a previous experiment in which HIV-1 was passaged through chimpanzees. To examine whether this substitution conferred a species specific growth advantage, we used site-directed mutagenesis to generate variants of these chimpanzee-adapted HIV-1 strains with Lys at Gag-30, and tested their replication in both human and chimpanzee CD4+ T lymphocytes. Remarkably, viruses encoding Met replicated to higher titers than viruses encoding Lys in chimpanzee T cells, but the opposite was found in human T cells. Taken together, these observations provide compelling evidence for host-specific adaptation during the emergence of HIV-1 and identify the viral matrix protein as a modulator of viral fitness following transmission to the new human host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.