Abstract

Purpose of reviewIn response to the HIV–AIDS pandemic, great strides have been made in developing molecular methods that accurately quantify nucleic acid products of HIV-1 at different stages of viral replication and to assess HIV-1 sequence diversity and its effect on susceptibility to small molecule inhibitors and neutralizing antibodies. Here, we review how knowledge gained from these approaches, including viral RNA quantification and sequence analyses, have been rapidly applied to study SARS-CoV-2 and the COVID-19 pandemic.Recent findingsRecent studies have shown detection of SARS-CoV-2 RNA in blood of infected individuals by reverse transcriptase PCR (RT-PCR); and, as in HIV-1 infection, there is growing evidence that the level of viral RNA in plasma may be related to COVID disease severity. Unlike HIV-1, SARS-CoV-2 sequences are highly conserved limiting SARS-CoV-2 sequencing applications to investigating interpatient genetic diversity for phylogenetic analysis. Sensitive sequencing technologies, originally developed for HIV-1, will be needed to investigate intrapatient SARS-CoV-2 genetic variation in response to antiviral therapeutics and vaccines.SummaryMethods used for HIV-1 have been rapidly applied to SARS-CoV-2/COVID-19 to understand pathogenesis and prognosis. Further application of such methods should improve precision of therapy and outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.