Abstract

Our brains are constantly adapting to changes in our visual environments. Neural adaptation exerts a persistent influence on the activity of sensory neurons and our perceptual experience, however there is a lack of consensus regarding how adaptation is implemented in the visual system. One account describes fatigue-based mechanisms embedded within local networks of stimulus-selective neurons (networked fatigue models). Another depicts adaptation as a product of stimulus expectations (predictive coding models). In this review, I evaluate neuroimaging and psychophysical evidence that poses fundamental problems for predictive coding models of neural adaptation. Specifically, I discuss observations of distinct repetition and expectation effects, as well as incorrect predictions of repulsive adaptation aftereffects made by predictive coding accounts. Based on this evidence, I argue that networked fatigue models provide a more parsimonious account of adaptation effects in the visual system. Although stimulus expectations can be formed based on recent stimulation history, any consequences of these expectations are likely to co-occur (or interact) with effects of fatigue-based adaptation. I conclude by proposing novel, testable hypotheses relating to interactions between fatigue-based adaptation and other predictive processes, focusing on stimulus feature extrapolation phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.