Abstract

Adaptation of firing rates in auditory-nerve fibers appears to reflect two distinct processes. Rapid adaptation occupies the first few milliseconds of response and is superimposed upon short-term adaptation which has a time constant of about 40 ms. The properties of the two processes are reviewed and compared, and a phenomenological model is developed that successfully accounts for them. The model consists of several stages which have been tentatively associated with underlying physiological processes. In the first stage stimulus intensity is transformed by a static nonlinearity, followed by a low-pass filter. The filtered output may correspond to the hair-cell receptor potential. It modulates the release of a substance that possibly represents synaptic transmitter. Adaptation is produced by the depletion of transmitter which is located in three stores in cascade. A global store with fixed concentration controls the steady-state response and replenishes a local store which is responsible for short-term adaptation. The local store replenishes a rapidly depleted immediate store. Flow between stores is proportional to concentration gradients with the following exceptions. The immediate store is subdivided into independent volumes or sites and there is no flow among sites or back to the local store. A given site becomes activated only when the receptor potential exceeds its particular activation value and the number of activated sites is proportional to the receptor potential. The flow of transmitter from the immediate store is assumed to be proportional to neural firing rate, with some minor modifications described in the text. The properties of the model are determined from the underlying equations and from a computer simulation. The model produces realistic response properties including PST histograms, onset and steady-state rate-intensity functions, incremental and decremental responses, response modulation for amplitude modulated stimuli, and period histograms for low-frequency tones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.