Abstract
AbstractWe prove a structure theorem for triangulated Calabi–Yau categories: an algebraic 2-Calabi–Yau triangulated category over an algebraically closed field is a cluster category if and only if it contains a cluster-tilting subcategory whose quiver has no oriented cycles. We prove a similar characterization for higher cluster categories. As an application to commutative algebra, we show that the stable category of maximal Cohen–Macaulay modules over a certain isolated singularity of dimension 3 is a cluster category. This implies the classification of the rigid Cohen–Macaulay modules first obtained by Iyama and Yoshino. As an application to the combinatorics of quiver mutation, we prove the non-acyclicity of the quivers of endomorphism algebras of cluster-tilting objects in the stable categories of representation-infinite preprojective algebras. No direct combinatorial proof is known as yet. In the appendix, Michel Van den Bergh gives an alternative proof of the main theorem by appealing to the universal property of the triangulated orbit category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.