Abstract
Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air–liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro.Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.