Abstract

Acute perturbations of clathrin and associated proteins at synapses have provided a wealth of knowledge on the molecular mechanisms underlying clathrin-mediated endocytosis (CME). The basic approach entails presynaptic microinjection of an inhibitory reagent targeted to the CME pathway, followed by a detailed ultrastructural analysis to identify how the perturbation affects the number and distribution of synaptic vesicles, plasma membrane, clathrin-coated pits, and clathrin-coated vesicles. This chapter describes the methodology for acutely perturbing CME at the lamprey giant reticulospinal synapse, a model vertebrate synapse that has been instrumental for identifying key protein-protein interactions that regulate CME in presynaptic nerve terminals with broader extension to nonneuronal cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.