Abstract

The current study sought to delineate the gene expression profile of the host response in the caecum and colon during acute infection with Clostridium difficile in a mouse model of infection, and to investigate the nature of the unfolded protein response in this process. The infected mice displayed a significant up-regulation in the expression of chemokines (Cxcl1, Cxcl2 and Ccl2), numerous pro-inflammatory cytokines (Ifng, Il1b, Il6, and Il17f), as well as Il22 and a number of anti-microbial peptides (Defa1, Defa28, Defb1, Slpi and Reg3g) at the site(s) of infection. This was accompanied by a significant influx of neutrophils, dendritic cells, cells of the monocyte/macrophage lineage and all major subsets of lymphocytes to these site(s). However, CD4 T cells of the untreated and C.difficile-infected mice expressed similar levels of CD69 and CD25. Neither tissue had up-regulated levels of Tbx21, Gata3 or Rorc. The caeca and colons of the infected mice showed a significant increase in eukaryotic initiation factor 2α (eIF2α) phosphorylation, but neither the splicing of Xbp1 nor the up-regulation of endoplasmic reticulum chaperones, casting doubt on the full-fledged induction of the unfolded protein response by C.difficile. They also displayed significantly higher phosphorylation of AKT and signal transducer and activator of transcription 3 (STAT3), an indication of pro-survival signalling. These data underscore the local, innate, pro-inflammatory nature of the response to C.difficile and highlight eIF2α phosphorylation and the interleukin-22-pSTAT3-RegIIIγ axis as two of the pathways that could be used to contain and counteract the damage inflicted on the intestinal epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.