Abstract

Inadequate dissolved oxygen in the aquatic environment is a well-established cause of fish morbidity and mortality. The specific effects of hypoxia on immune function in fish, however, are not well characterized. In this study, the effects of acute hypoxia followed by reoxygenation (rapid tissue reperfusion) as a source of immunocompromise in Nile tilapia Oreochromis niloticus were investigated. Using a precision apparatus developed in our laboratory for hypoxia exposures, a series of assays of increasing specificity for immune function were performed on acutely hypoxia-stressed Nile tilapia: tier I consisted of histopathology, tier II of hematology, plasma chemistry, and determining cortisol concentration, and tier III of determining the phagocytic index and analyzing the expression of the cytokines transforming growth factor-beta (TGF-beta) and interleukin-1beta (IL-1beta). Nile tilapia were exposed to 7% oxygen saturation for 96 h, then tank water was rapidly reoxygenated. Sampling intervals were 48 and 96 h during hypoxia and 12 and 84 h during reperfusion. Histopathology showed no remarkable microscopic abnormalities in lymphoid or other tissues. Lymphopenia and neutrophilia were observed in peripheral blood. Plasma total protein, partial pressure of oxygen, and oxygen saturation were decreased in response to hypoxia. Plasma lipase decreased in response to hypoxia but returned to normal during reperfusion. Phagocytic capability and the phagocytic index decreased during hypoxia and 12 h reperfusion, whereas these values were recovered by 84 h reperfusion. The TGF-beta transcription continued to increase during the exposures, the greatest production being at 12 h reperfusion, whereas IL-1beta transcription decreased in response to hypoxia and reperfusion. We conclude that acute hypoxia triggered an overall downregulation of the immune system in the test fish. This suggests a possible factor in the pathogenesis of disease outbreaks in fish in which repeated, sublethal bouts of environmentally induced hypoxia lead to increased disease susceptibility and individual mortalities rather than massive fish kills.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.