Abstract
Inactivity-related diseases such as cardiovascular disease (CVD) are linked to chronic low-grade, systemic inflammation. Platelet-monocyte complexes (PMCs) are markers of in vivo platelet activation and atherosclerosis, and may be early indicators of subclinical inflammation. PURPOSE: To examine the effects of a single exercise bout on PMCs in those at risk for CVD. METHODS: Twenty-five overweight-obese (BMI 32.7 ± 5.2 kg·m-2, 55-75 yr) women were randomly assigned to either the exercise (EX, n=13) or non-exercise control (CON, n=12) group. EX performed 2 sets of 8 resistance exercises and a 25-min treadmill walk at 70-80% HRR. Blood was obtained pre-exercise (PR), post- (PO), 1-hour and 2 hours post-exercise (1HR and 2HR). Blood was obtained at the same time points in CON. PMCs were identified via flow cytometry and analyzed in each monocyte phenotype. Monocyte phenotypes were defined as: Mon1 (CD14+CD16−CCR2+), Mon2 (CD14+CD16+CCR2+), and Mon3 (CD14+CD16+CCR2−). All events positive for both CD14 and CD42a (marker for platelets) were considered PMCs. RESULTS: A main effect for time revealed an increase in total PMC number at PO (p=0.036). This increase appears to have been driven by EX (EX = 61.5%; CON = 33.8% increase). Mon1 and Mon2 PMC responses were similar. A significant time x group interaction for Mon3 PMCs (p=0.002) indicated an increase from PR to PO (PR = 5218±1170 cells·ml-1, PO = 8195±1152 cells·ml-1), and a decrease from PO to 1HR and 2HR (1HR = 3767±820 cells·ml-1 2HR = 3818±814 cells·ml-1). PMC number remained constant for CON at all timepoints. Estimated VO2max was negatively correlated with CD42a MFI (a marker of platelet density per monocyte) (r = -0.583, p = 0.003). Systolic blood pressure (SBP) positively correlated with percent PMC (% CD42a positive monocytes; r = 0.458, p = 0.042). CONCLUSIONS: Aerobic fitness appears to reduce platelet activation indicated by the negative relationship between VO2max and CD42a MFI. Chronic elevations in resting SBP are linked to PMC percentage, possibly due to sheer stress-induced platelet activation. It is possible that PMC elevation at PO is at least partially driven by exercise- induced increases in BP. These results support previous literature, indicating that PMCs are a marker CVD risk and may elucidate one mechanism by which physical fitness reduces risk for CVD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.