Abstract

PurposeExercise on a whole body vibration (WBV) platform, namely WBV exercise (WBVE), has long-term beneficial effects on glucose metabolism, similarly to conventional moderate-intensity exercise. Conventional moderate-intensity exercise reduces post-load plasma glucose levels at the acute phase. This study aimed to reveal acute effects of WBVE on post-load glucose metabolism.MethodsThis randomized crossover trial enrolled 18 healthy men. They completed the following three interventions in a random order: (1) a 2-hour 75-g oral glucose tolerance test (OGTT) without WBVE (OGTT-alone), (2) 20-minute WBVE before an OGTT (WBVE → OGTT), and (3) 20-minute WBVE during an OGTT (OGTT → WBVE). Post-load glucose metabolism in the WBVE → OGTT and OGTT → WBVE interventions were compared with that in the OGTT-alone intervention.ResultsPlasma glucose levels in the WBVE → OGTT and OGTT → WBVE interventions were not significantly different from those in the OGTT-alone intervention at any time point except 15 min, wherein the WBVE → OGTT intervention had higher glucose levels (111 [interquartile range, 102–122] mg/dL vs 122 [111–134] mg/dL, P = 0.026). Higher plasma glucagon levels were observed at 0 min in the WBVE → OGTT intervention and at 60 min in the OGTT → WBVE intervention (P = 0.010 and 0.015). Cortisol, Growth hormone, and adrenaline levels were significantly increased after WBVE, whereas noradrenaline levels were not. Serum insulin levels in the WBVE → OGTT intervention were significantly higher than those in the OGTT-alone intervention at 0 min (P = 0.008).ConclusionsWBVE did not decrease post-load plasma glucose levels at the acute phase. Acute effects of WBVE on post-load glucose metabolism would not be identical to those of conventional exercise.The unique trial number and the name of the registry: UMIN000036520, www.umin.ac.jp, date of registration, June 12, 2019.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.