Abstract

Fibrosis, tightly associated with fibroblasts collagen synthesis, is related closely with inflammatory response. Our previously study found that acute downregulation of miR-155 at wound sites leads to a reduced fibrosis, however its particular mechanism is unclear. Herein, we aimed to explore the mechanism of miR-155 in reducing fibrosis. We first found that down-regulation of miR-155 inhibited macrophages transforming growth factor-β1 (TGF-β1) and IL-1β secretion. Next, we found that co-cultured with macrophages increased the proliferation and collagen synthesis of fibroblasts, and downregulation of miR-155 in macrophages could effectively attenuate the accelerative effects. We further identified SH2 domain containing inositol-5-phosphatase 1 (SHIP1) as a direct target of miR-155 in macrophages, and the expression of SHIP1 was negatively correlated with the level of miR-155. We further confirmed that PI3K/Akt pathway was involved in this process. Last, we found that downregulation of miR-155 leads to a reduced fibrosis in sever burn rat. Taken together, these results indicate that down-regulation of miR-155 leads to a reduced fibroblasts proliferation and collagen synthesis through attenuating macrophages TGF-β1 and IL-1β secretion by targeting SHIP1 via PI3K/Akt pathway, suggesting its potential therapeutic effects on the treatment of skin fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.