Abstract

JWH-018 is the most known compound among synthetic cannabinoids (SCs) used for their psychoactive effects. SCs-based products are responsible for several intoxications in humans. Cardiac toxicity is among the main side effects observed in emergency departments: SCs intake induces harmful effects such as hypertension, tachycardia, chest pain, arrhythmias, myocardial infarction, breathing impairment, and dyspnea. This study aims to investigate how cardio-respiratory and vascular JWH-018 (6 mg/kg) responses can be modulated by antidotes already in clinical use. The tested antidotes are amiodarone (5 mg/kg), atropine (5 mg/kg), nifedipine (1 mg/kg), and propranolol (2 mg/kg). The detection of heart rate, breath rate, arterial oxygen saturation (SpO2), and pulse distention are provided by a non-invasive apparatus (Mouse Ox Plus) in awake and freely moving CD-1 male mice. Tachyarrhythmia events are also evaluated. Results show that while all tested antidotes reduce tachycardia and tachyarrhythmic events and improve breathing functions, only atropine completely reverts the heart rate and pulse distension. These data may suggest that cardiorespiratory mechanisms of JWH-018-induced tachyarrhythmia involve sympathetic, cholinergic, and ion channel modulation. Current findings also provide valuable impetus to identify potential antidotal intervention to support physicians in the treatment of intoxicated patients in emergency clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.