Abstract

Acute alcohol intoxication has wide-ranging neurobehavioral effects on psychomotor, attentional, inhibitory, and memory-related cognitive processes. These effects are mirrored in disruption of neural metabolism, functional activation, and functional network coherence. Metrics of intraregional neural dynamics such as regional signal variability (RSV) and brain entropy (BEN) may capture unique aspects of neural functional capacity in healthy and clinical populations; however, alcohol's influence on these metrics is unclear. The present study aimed to elucidate the influence of acute alcohol intoxication on RSV and to clarify these effects with subsequent BEN analyses. 26 healthy adults between 25 and 45years of age (65.4% women) participated in 2 counterbalanced sessions. In one, participants consumed a beverage containing alcohol sufficient to produce a breath alcohol concentration of 0.08g/dl. In the other, they consumed a placebo beverage. Approximately 35minutes after beverage consumption, participants completed a 9-minute resting-state fMRI scan. Whole-brain, voxel-wise standard deviation was used to assess RSV, which was compared between sessions. Within clusters displaying alterations in RSV, sample entropy was calculated to assess BEN. Compared to the placebo, alcohol intake resulted in widespread reductions in RSV in the bilateral middle frontal, right inferior frontal, right superior frontal, bilateral posterior cingulate, bilateral middle temporal, right supramarginal gyri, and bilateral inferior parietal lobule. Within these clusters, significant reductions in BEN were found in the bilateral middle frontal and right superior frontal gyri. No effects were noted in subcortical or cerebellar areas. Findings indicate that alcohol intake produces diffuse reductions in RSV among structures associated with attentional processes. Within these structures, signal complexity was also reduced in a subset of frontal regions. Neurobehavioral effects of acute alcohol consumption may be partially driven by disruption of intraregional neural dynamics among regions involved in higher-order cognitive and attentional processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.