Abstract

Endothelium-dependent hyperpolarizations (EDHs) contribute to the regulation of peripheral resistance. They are initiated through opening of endothelial calcium-activated potassium channels (KCa ); the potassium ions released then diffuse to the underlying smooth muscle cells, causing hyperpolarization and thus relaxation. The present study aimed to examine whether or not AMPK modulates EDH-like relaxations in rat mesenteric arteries. Arterial rings were isolated for isometric tension recording. AMPK activity and protein level were measured by ELISA and western blotting respectively. The AMPK activator, AICAR, reduced ACh-induced EDH-like relaxations and increased AMPK activity in preparations with endothelium; these responses were prevented by compound C, an AMPK inhibitor. AICAR inhibited relaxations induced by SKA-31 (opener of endothelial KCa ) but did not affect potassium-induced, hyperpolarization-attributable relaxations or increase AMPK activity in preparations without endothelium. A769662, another AMPK activator, not only caused a similar inhibition of relaxations to ACh and SKA-31 in preparations with endothelium but also inhibited hyperpolarization-attributable relaxations and augmented AMPK activity in rings without endothelium. Protein levels of total AMPKα, AMPKα1, or AMPKβ1/2 were comparable between preparations with and without endothelium. Activation of endothelial AMPK, by either AICAR or A769662, acutely inhibits EDH-like relaxations of rat mesenteric arteries. Furthermore, A769662 inhibits signalling downstream of smooth muscle hyperpolarization. In view of the major blunting effect of AMPK activation on EDH-like relaxations, caution should be applied when administering therapeutic agents that activate AMPK in patients with endothelial dysfunction characterized by reduced production and/or bioavailability of NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.