Abstract
The main aim of this work is to investigate the actuator driving force variations of a parallel kinematic machine (PKM) for different cutting paths. To meet this aim, a TRR-XY five-degrees-of-freedom (5DOF) PKM was selected and built for this research, and a dynamic analysis model of the PKM was developed. Here, ‘T’ stands for translational DOF and ‘R’ stands for rotational DOF of the platform. In this research, the dynamic analysis and modelling for the TRR-XY PKM are derived on the basis of the Denavit-Hartenberg (D-H) notation method. The parametric tool concept and Lagrange equation theory are also included in the derivation. The actuator driving force variations for different cutting paths are obtained using the developed dynamic modelling. Five cutting paths are selected to represent the possible cutting paths inside the workspace. The obtained actuator driving force variations on A, B, C chains are useful for obtaining a good dynamic performance PKM machining application. The main results show that the required actuator driving forces are mainly affected by the inclination angle, ϕ of the tool platform. The angular acceleration of the tool platform has only very little effect. For obtaining a better PKM machining application, a working space with smaller ϕ is recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.