Abstract

The effect of cutting tool geometry has long been an issue in understanding mechanics of cutting process. Tool geometry has significant influence on chip formation, heat generation, tool wear, surface finish and surface integrity during cutting process. This paper presents the actually geometry of milling tool involved in cutting process based on mathematics analytical methods including matrix translation and rotation. Results show that according to the different helix angle and tool fluted, the geometry of cutting tool involved in cutting is different. For two or three-fluted mirco-milling tools, no mater helix angle is 30 or 45, the actually geometry involved in cutting is sphere. Different cutting tool corresponds to different sphere radius. Experiments were set up to validate the effect of cutting tool geometry on cutting forces. Results show that the smaller of the sphere radius of cutting tool, the lower of the cutting force; the larger of the sphere radius, the higher of the cutting force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.