Abstract

In this paper we investigate activity-driven clock trees to reduce the dynamic power consumption of synchronous digital CMOS circuits. Sections of an activity-driven clock tree can be turned on/off by gating the clock signals during the active/idle times of the clocked elements. We propose a method of obtaining the switching activity patterns of the clocked circuits during the high level design process. We formulate three novel activity-driven problems. The objective of these problems is to minimize system's dynamic power consumption. We propose an approximation algorithm based on recursive matching to solve the clock tree construction problem. We solve the gate insertion problems with an exact algorithm employing the dynamic programming paradigm. Finally, we present experimental results that verify the effectiveness of our approach. Our work in this paper is a step in understanding how high level decisions (e.g. behavioral design) can affect a low level design (e.g. clock design).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.