Abstract

Cyclic nucleotide-gated (CNG) channels are crucial for phototransduction in vertebrate rod photoreceptors. The cGMP sensitivity of these channels is modulated by diffusible intracellular messengers, including Ca2+/calmodulin, contributing to negative feedback during sensory adaptation. Membrane-associated protein tyrosine kinases and phosphatases also modulate rod CNG channels, but whether this results from direct changes in the phosphorylation state of the channel protein has been unclear. Here, we show that bovine rod CNG channel alpha-subunits (bRET) contain a tyrosine phosphorylation site crucial for modulation. bRET channels expressed in Xenopus oocytes exhibit modulation, whereas rat olfactory CNG channels (rOLF) do not. Chimeric channels reveal that differences in the C terminus, containing the cyclic nucleotide-binding domain, account for this difference. One specific tyrosine in bRET (Y498) appears to be crucial; replacement of this tyrosine in bRET curtails modulation, whereas installation into rOLF confers modulability. As the channel becomes dephosphorylated, there is an increase in the rate of spontaneous openings in the absence of ligand, indicating that changes in the phosphorylation state affect the allosteric gating equilibrium. Moreover, we find that dephosphorylation, which favors channel opening, requires open channels, whereas phosphorylation, which promotes channel closing, requires closed channels. Hence, modulation by changes in tyrosine phosphorylation is activity-dependent and may constitute a positive feedback mechanism, contrasting with negative feedback systems underlying adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.