Abstract

The activity of the bimodal fluorescent protein (bmFP) (lambda max, 488 and 517 nm) in the in vitro luciferase reaction has been studied. The bmFP that is produced by Photobacterium phosphoreum strain bmFP is a dimer of two homologous subunits binding four riboflavin 5'-phosphate (FMN)-myristate chromophores. The addition of bmFP to the luciferase reaction in the presence of the lumazine protein prevented the lumazine protein-induced blue shift in the emission band. The bmFP reduced electrochemically serves as a substrate in the luciferase reaction in the absence of added FMN, resulting in light emission with a single maximum at about 487 nm. The bmFP was also active in lieu of FMN in the NADH/FMN oxidoreductase (flavin reductase)-luciferase coupled bioluminescence reaction in the absence of added FMN. In the coupled reaction, bioluminescence with the isolated bmFP chromophore was weaker than that with the holo-bmFP. After bmFP was used in luciferase reactions initiated either chemically or electrochemically, it was still capable of emitting bimodal fluorescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.