Abstract

A hierarchically ordered macroporous RuO2 electrode (HOM-RuO2) was fabricated to enhance in situ active chlorine production in an electrochemical system intended for treatment of pharmaceutical active compounds (PhACs). The unique structure of HOM-RuO2 resulted in a decrease of the chlorine evolution potential, a large electro-active area available for in situ conversion of Cl- to active chlorine, and hence improved the active chlorine production by 40%. 5-Fluorouracil (5-FU) was used as a target pollutant to explore the performance of the HOM-RuO2 for PhACs degradation based on the in situ generated active chlorine. The results showed that the reaction rate of active-chlorine-mediated oxidation of 5-FU produced using the HOM-RuO2 was 18.4 times higher than that in the case of hydroxyl radicals (OH)-initiated oxidation using a PbO2 electrode at 30mAcm-2. The effects of current density and initial solution pH on the 5-FU removal were investigated. The mechanism of 5-FU degradation was proposed taking into accounts both active chlorine production, and change of the speciation of 5-FU caused by pH variations. The dominant degradation products observed for the degradation of 5-FU using the HOM-RuO2 were lactic acid, propanol, acetic acid, urea and other small molecules, but no chlorinated products were detected. These study demonstrates the promise of the HOM-RuO2-based electrochemical systems for the active-chlorine-mediated treatment of recalcitrant pharmaceuticals found in wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.