Abstract

Recently, active suspension is gaining popularity in commercial automobiles. To develop the control methodologies for active suspension control, a quarter-car test bed was built employing a direct-drive tubular linear brushless permanent-magnet motor (LBPMM) as a force-generating component. Two accelerometers and a linear variable differential transformer (LVDT) are used in this quarter-car test bed. Three pulse-width-modulation (PWM) amplifiers supply the currents in three phases. Simulated road disturbance is generated by a rotating cam. Modified lead-lag control, linear-quadratic (LQ) servo control with a Kalman filter, fuzzy control methodologies were implemented for active-suspension control. In the case of fuzzy control, an asymmetric membership function was introduced to eliminate the DC offset in sensor data and to reduce the discrepancy in the models. This controller could attenuate road disturbance by up to 77% in the sprung mass velocity and 69% in acceleration. The velocity and the acceleration data of the sprung mass are presented to compare the controllers' performance in the ride comfort of a vehicle. Both simulation and experimental results are presented to demonstrate the effectiveness of these control methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.