Abstract

ABSTRACT Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.