Abstract

AbstractPhotonic crystals (PC) offer novel approaches for integrated photonics by allowing the manipulation of light based on the photonic bandgap effect rather than internal-reflection mechanisms employed in traditional devices. Electro-optic polymers represent interesting possibilities for the development of devices leveraging control over the phase of a confined propagating wave. We here report on the development of such active photonic crystal technology in ionically self-assembled monolayers. The simulation of active photonic devices such as Mach-Zehnder interferometers and wavelength multiplexers is first presented. We then report on the synthesis and optical characterization of electro-optic films grown through the ISAM technique. We conclude by presenting the preliminary development of a nanofabrication platform that would enable the realization of active photonic devices in such materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.