Abstract

Next-generation autonomous systems must execute complex tasks in uncertain environments. Active perception, where an autonomous agent selects actions to increase knowledge about the environment, has gained traction in recent years for motion planning under uncertainty. One prominent approach is planning in the belief space. However, most belief-space planning starts with a known reward function, which can be difficult to specify for complex tasks. On the other hand, symbolic control methods automatically synthesize controllers to achieve logical specifications, but often do not deal well with uncertainty. In this letter, we propose a framework for scalable task and motion planning in uncertain environments that combines the best of belief-space planning and symbolic control. Specifically, we provide a counterexample-guided-inductive-synthesis algorithm for probabilistic temporal logic over reals (PRTL) specifications in the belief space. Our method automatically generates actions that improve confidence in a belief when necessary, thus using active perception to satisfy PRTL specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.