Abstract
Microprocessors and memory systems suffer from a growing gap in performance. We introduce Active Pages, a computation model which addresses this gap by shifting data-intensive computations to the memory system. An Active Page consists of a page of data and a set of associated functions which can operate upon that data. We describe an implementation of Active Pages on RADram (Reconfigurable Architecture DRAM), a memory system based upon the integration of DRAM and reconfigurable logic. Results from the SimpleScalar simulator [BA97] demonstrate up to 1000X speedups on several applications using the RADram system versus conventional memory systems. We also explore the sensitivity of our results to implementations in other memory technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.