Abstract

SiO2 and MCM-41 supported Ruthenium catalysts were synthesized using to well establish protocols (sol gel method and direct incorporation of Ru metal). The catalytic performances of both the catalytic systems (Ru/SiO2 and Ru/MCM-41) were tested for the selective hydrogenation of CO2 to formic acid. The physiochemical properties of the catalysts were examined using sophisticated analytical techniques like N2 physisorption (BET/BJH methods), X-ray diffraction, and temperature programmed reduction analysis, H2 chemisorption, ICP-MS etc. The Ru doped siliceous MCM-41 catalysts were found highly active in terms formic acid quantity (TON/TOF) over Ru/SiO2 catalytic system. Separately, we also synthesized a series of functionalized ionic liquids as a reaction medium not only for hydrogenation reaction but also as an absorbent to solubilize CO2 gas and to anchor the formic acid (hydrogenation product). Such advance applications of ionic liquid helped to run the reaction in a more optimized way to achieve maximum selectivity in terms of high TON/TOF value of formic acid with the added advantage of eight times catalyst recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.