Abstract
SUMMARYIn this paper, we focus on the unknown environments without artificial landmarks and features, such as disaster situations and polar regions. An approach to active exploration based on an on-line scheme for autonomous allocation of landmarks is proposed. Specifically, the robot carries along with itself some landmarks which are to be allocated during the exploration according to some heuristic rules. The utility of landmark allocation is analyzed and calculated. Then the active exploration is converted into a problem of multi-objective optimization. The objective function includes three weighted terms: the accuracy of localization and mapping, the coverage rate of the unknown environment and the utility of the allocated landmarks. By solving this optimization problem, control inputs of the robot are computed to guarantee that accurate localization, high-quality mapping and complete exploration can be achieved simultaneously. Moreover, supplementation and redundancy elimination of the allocated landmarks are executed to make a complete and non-redundant coverage for the environment. Finally, some landmarks, together with a device for allocating these landmarks, are developed. Both experiment and simulation results are presented to demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.