Abstract

This study investigated the effects of treadmill walking during remobilization on range of motion (ROM) and histopathology in rat knee joints, which were immobilized for 3 wk in a flexed position. After fixator removal, rats were divided into a no-intervention (RM) group and a group forced to walk on a treadmill daily at 12 m/min for 60 min (WALK group). Passive knee extension ROMs were measured before (m-ROM) and after (a-ROM) knee flexor myotomy on the first and last day of a 7-day remobilization period, with m-ROM mainly reflecting myogenic factors and a-ROM reflecting arthrogenic factors. Knee joints were histologically analyzed and gene expression of inflammatory or fibrosis-related mediators in the posterior joint capsule were examined. m-ROM and a-ROM restrictions were established after immobilization. m-ROM significantly increased following the remobilization period both in RM and WALK groups compared with that of immobilized (IM) group. Conversely, a-ROM decreased following the remobilization period in both RM and WALK groups compared with that of IM group. Importantly, a-ROM was smaller in the WALK group than the RM group. Remobilization without intervention induced inflammatory and fibrotic reactions in the posterior joint capsule after 1 and 7 days. Treadmill walking promoted these reactions and also increased the expression of fibrosis-related TGF-β1 and collagen type I and III genes. While free movement after immobilization improved myogenic contracture, arthrogenic contracture worsened. Treadmill walking further aggravated arthrogenic contracture through amplified inflammatory and fibrotic reactions. Thus active exercise immediately after immobilization may not improve immobilization-induced joint contracture. NEW & NOTEWORTHY In clinical practice, it is widely accepted that facilitation of joint movements is effective in improving immobilization-induced joint contracture. However, whether active exercises improve arthrogenic contracture is not known. In this study, we revealed that treadmill walking further promoted remobilization-induced progression of arthrogenic contracture. To our knowledge, this is the first study demonstrating no favorable effect of active exercise on immobilization-induced arthrogenic contracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.