Abstract

We have developed a simple algorithm to overcome the problem of thermal drift in an atomic force microscope (AFM) operating under ambient conditions. Using our method, we demonstrate that the AFM tip remains above a 5-nm-high and 50-nm-long CdSe nanorod for more than 90 min despite the thermal drift present (6 nm/min). We have applied our drift compensation technique to the AFM manipulation of CdSe colloidal nanorods lying horizontally on a highly oriented pyrolytic graphite surface. Since we have precise control over the position of the AFM tip relative to the nanorod, we can choose to either translate or rotate the rod by changing the location of the tip-rod interaction point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.