Abstract
Active control of self-excited roll oscillations of a rectangular flat plate wing with an aspect ratio of two was studied experimentally in a wind tunnel, using synthetic jet excitation near the leading edge. It was found that, by activating the synthetic jet excitation at an optimum frequency of St = 1, large amplitude roll oscillations could be attenuated and the onset of the oscillation can be delayed by up to Δαmax = 3.5° for extremely small values of momentum coefficient. High frame-rate Particle Image Velocimetry (PIV) measurements revealed a strong resonance between the synthetic jet excitation and shear layer instabilities. The resonance energizes the shear layer separated from the leading edge and results in a local flow field that is more typical of lower wing incidence, thus effectively suppressing roll oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.