Abstract

The ability to change wettability in situ would realize active surfaces that can change their functionality and adapt to different environments. This article reports a new and easy method that controls surface wettability in situ. In doing so, three hypotheses were to be proven. First, thiol molecules with dipole moments at the end that were adsorbed onto gold could change the contact angles of nonpolar or slightly polar liquids when an electric current was provided at the gold surface without having to ionize the dipole. It was also hypothesized that the molecules would undergo conformation changes as their dipoles would align with the magnetic field induced by the applied current. Second, the ability to change contact angles was modified by mixing ethanethiol, a much shorter thiol with no dipole, with the abovementioned thiol molecules because it would provide space for the thiol molecules to undergo conformation changes. Third, the indirect evidence of the conformation change was verified with attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Four thiol molecules that controlled the contact angles of deionized water and hydrocarbon liquids were identified. The abilities of those four molecules in changing the contact angles were modified by adding ethanethiol. A quartz crystal microbalance was used to infer the possible change in the distance between the adsorbed thiol molecules by investigating adsorption kinetics. The changes in FT-IR peaks with respect to applied currents were also presented as indirect evidence for the conformation change. This method was compared with other reported methods that control wettability in situ. The differences between the voltage-driven method to induce conformation changes of thiol molecules and the method presented in this paper were further discussed to emphasize that the mechanism by which the conformation change was induced in this article was most likely because of the dipole-electric current interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.