Abstract
We report the purification and characterization of an active catalytic fragment of Ca2+/calmodulin-dependent protein kinase II, derived from autophosphorylation and subsequent limited chymotryptic digestion of the purified rat forebrain soluble kinase. The purified fragment was completely Ca2+/calmodulin-independent, existed as a monomer, and phosphorylated synapsin I at the same sites as does the native form of Ca2+/calmodulin-dependent protein kinase II. Kinetic studies with the purified fragment revealed a more than 10-fold increase in Vmax and a 50% decrease in Km for synthetic peptide substrates, compared with native Ca2+/calmodulin-dependent protein kinase II. No 32P-labeled autophosphorylated residues were detected in the purified active fragment, indicating that the autophosphorylation sites were not contained within this fragment. Comparative studies of this active fragment (30 kDa) and its inactive counterpart (32-kDa fragment) revealed certain structural details of both fragments. Calmodulin-overlay study, immunoblot analysis, and direct amino acid sequencing suggest that both fragments contain the entire NH2-terminal catalytic domain and were generated by distinct cleavage within the regulatory domain. The putative cleavage sites for both fragments are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.