Abstract
To analyze the role of SV40 genome in the phenotypic alterations previously observed in SV40-transformed cell lines, we infected rabbit renal cortical cells with a temperature-sensitive SV40 mutant strain (tsA58) and compared the cell phenotypes at temperatures permissive (33 degrees C) and restrictive (39.5 degrees C) for SV40 genome expression. At both temperatures, the resulting cell line (RC.SVtsA58) expresses cytokeratin and uvomorulin, but epithelial differentiation is more elaborate at 39.5 degrees C as shown by the formation of a well-organized cuboidal monolayer with numerous tight junctions and desmosomes. Functional characteristics are also markedly influenced by the culture temperature: cells grown at 33 degrees C respond only to isoproterenol (ISO, 10(-6) M) by a sevenfold increase in cAMP cell content above basal values; in contrast, when transferred to 39.5 degrees C, they exhibit increased sensitivity to ISO (ISO/basal: 19.1) and a dramatic response to 10(-7) M dDarginine vasopressin (dDAVP/basal: 18.2, apparent Ka: 5 X 10(-9) M) which peaks 48 h after the temperature shift. The latter is associated with membrane expression of V2-type AVP receptors (approximately 50 fmol/10(6) cells) which are undetectable when SV40 genome is activated (33 degrees C). Clonal analysis, additivity studies, and desensitization experiments argue for the presence of a single cell type responsive to both AVP and ISO. The characteristics of the RC. SVtsA58 cell line at 39.5 degrees C (effector-stimulated cAMP profile, lack of expression of brush-border hydrolases and Tamm-Horsfall protein) suggest that it originates from the cortical collecting tubule, and probably from principal cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.